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0. Abstract (continued)

treated independently. Each impressed current produces a "dominant" current
distribution, a characteristic of the element, which can be readily computed.
Current coupling is formulated by "intrinsic" impedance matrices which relate
the scalar potentials at the terminals of an element, caused by its dominant
current distributions, to the impressed currents of the element. Field coupling
produces "scatter" currents on all the elements, and is formulated by a "field
coupling" matrix which relates the scalar potentials at the terminals, caused
by field coupling, to the impressed currents at all the terminals. Intrinsic
and "field coupling" are combined to form the "complete" impedance matrix of
the diakopted antenna. Enforcing continuity of the currents and equality of
the scalar potentials at all the interconnections between the elements yields a
system of linear equations for the junction currents and the inut impedance of

the antenna. Current coupling dominates over field coupling. -ield coupling
due to the dominant current distributions of the elements is ci* primary importance
wnile field coupling due to the scatter currents is, in general, negligible.
This theory is applied to several multi-element antennas and the results are
compared with other methods to highlight the numerical advantages.
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Summary

This research document presents a new theory for the analysis of multi-

element antennas which consist of interconnected conductive structure elements

of electrically small dimensions. The theory is based on the retarded electro-

magnetic potentials which permit a diakoptic approach to t'ie problem. The

antenna is broken up into its individual structure elements. Each element is

assumed to be excited, a) by currents which are impressed at its terminals,

i.e. junctions with adjacent elements (current coupling), and b) by the electric

fields of the currents and charges on all the other elements (field coupling).

Both excitations are treated independently. Each impressed current produces a

"dominant" current distribution, a characteristic of the element, which can be

readily computed. Current coupling is formulated by "intrinsic" impedance

matrices which relate the scalar potentials at the terminals of an element,

caused by its dominant current distributions, to the impressed currents of the

element. Field coupling produces "scatter" currents on all the elements, and

is formulated by a "field coupling" matrix which relates the scalar potentials

at the terminals, caused by field coupling, to the impressed currents at all

the terminals. Intrinsic and "field coupling" are combined to form the

"complete" impedance matrix of the diakopted antenna. Enforcing continuity of

the currents and equality of the scalar potentials at all the interconnections

between the elements yields a system of linear equations for the junction

currents and the input impedance of the antenna. Current coupling dominates

over field coupling. Field coupling due to the dominant current distributions

of the elements is of primary importance while field coupling due to the

scatter currents is, in general, negligible. This theory is applied to several

multi-element antennas and the results are compared with otner methods to

highlight the numerical advantages.
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I. Introduction

Improved tactical communication systems require antennas which are

electrically small (i.e. small compared wit , the wavelength), have very large

bandwidths and reasonably high efficiency. It is well known to antenna

experts that these requirements work against each other. The problem therefore,

is to find sophisticated antenna structures which provide the best compromise

between these contradicting requirements.

Experimental investigations of empirically designed multielement antennas,

i.e., antennas which comprise a number of interconnected and closely spaced

conductive elements, have shown promising results. An example of such a broad-

band multielement monopole antenna is shown in Figure 1. This antenna con-

sists of four vertical conductors. The two thicker ones are grounded, while

the other two are interconnected near the ground plane and connected to the

input terminal. Each vertical conductor has a top capacitor in the form of

a metal plate, and there are inductive interconnections between the plates in

the form of wire loops. But antennas like the one mentioned, whose functioning

is not quite understood, are not amenable to conventional computer analysis.

An analytical treatment of such a composite structure appears to be a

rather hopeless undertaking. Commonly used numerical techniques are impracti-

cable because they would require computers with enormous storage. Moreover,

these techniques do not always yield reliable results [2].

This research offers a new approach to problems of this kind. According

to this approach the composite structure is diakopted into its individual

structure elements. As a simple example, Figure 2 shows a diakopted dipole

with end capacitor plates. Each structure element is characterized by

electrical quantities which depend only on size and shape of the element, and

3
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$the assembly is treated similarly to the interconnection of n-port netviorks.

The excitation of each element is ascribed to two causes, a) the currents

entering the element at its "terminals,' i.e. junctions with adjacent elements

or the source, and b) the fields of the currents and charges on all the other

elements. The first is referred to as "current coupling" and the second as

"field coupling." Both excitations are treated separately. Current coupling

implies hypothetical sources with a single terminal and the capability of

impressing a current onto a conductor. Although such sources violate the conti-

nuity condition, their assumption is permissible if the electro-magnetic fields

are expressed by the retarded electromagnetic potentials. Although the conti-

nuity condition is violated in the treatment of individual structure elements,

it is restored when the elements are interconnected. Thus, current coupling is

computed by impressing a current at a terminal of a structure element. This

current spreads over the surface of the element and produces a current distri-

bution which is uniquely determined by the geometry of the element and the

location of the terminal and is called the dominant current distribution

associated with a given terminal. There are as many dominant current distri-

butions as there are terminals. The relationship between the scalar potentials

at the terminals (produced by the dominant current distributions) and the im-

pressed currents is formulated by the "intrinsic impedance matrix" of the

element.

Field coupling,on the other hand.,excites scatter currents which are super- a

imposed on the dominant current distributions. The scalar potentials at the

terminals due to field coupling depend on all the impressed currents. Their

relationship with the impressed currents is forumlated by a "field coupling"

matrix. The intrinsic impedance matrix and 'field coupling" matrix combined

together form the "complete impedance matrix" of the diakopted antenna. This

6



matrix relates the total scalar ootentials at the terminals of all the elements

to all the impressed currents.

Interconnection of the structure elements, which requires equal scalar

potentials at the interconnected terminals and continuity of the junction

currents, it formulated by an interconnection matrix. In this manner a system

of linear equations is obtained which yields the junction currents and the

input impedance of the antenna.

A most simple antenna to which the theory applies is a simple monopole

antenna with a top capacitor. In this case, there are two structure elements,

the vertical conductor and the top capacitor. The qround plane can be replaced

by the antenna imaqe. No systematic way of comoutinq the impedance character-

istics of this antenna has been reoorted in the literature.

7



II. Diakoptic Theory of Multi-Element Antennas

In this section we shall develop the essential theoretical results re-

quired to implement the diakoptic theory.

Consider a multi-element radiating structure such as shown in Figure 1.

Various elements are interconnected to each other via terminals of junctions.

Let each radiating element be disconnected or (diakopted) from all other ele-

ments and be suspended in space. The assemblage of these disconnected ele-

ments is called the diakopted (or primitive) system. Each element has many

terminals on each of which certain impressed current and potential is assumed.

The essential requirement for this diakopted system with impressed currents

along the junctions is that it be performancewise identical to the assembled

antenna. Thus,

a) The sum of the impressed currents is zero at every junction between

the structure elements and the continuity condition is satisfied at

every input terminal. This requirement assures that the field of

assembled antenna is Maxwellian.

b) The scalar potentials at the interconnected terminals are equal.

c) The potential difference between the input in terminals is equated

with the driving voltage of the antenna source.

Let the potential-current relationship at every terminal be written

in matrix form:

[5] = [Z][I] [diakopted antenna] 11.1

: [Z]'[]' [assembled actual antenna] 11.2

Requirements (a), (b) and (c) represent Kirchoff's laws for interconnected

structures and can be written as

[' [C][l]' ~. ''.3
= [cLL][ 11

[C]



[C] t represents the transpose [C].

Matrix [Z] represents the impedance of the diakopted antenna and primed quantities

refer to the actual assembled antenna. [C] may be a rectangular matrix with

ICi., i s 0 or 1.
13

From 11.3, 11.4 and II.5, the impedance matrix of the actual structure can be

written as

[z]' = [C}t[Z][C]

An example at the end of this section shows how [C] and [Z]' are obtained.

The essential results of this section show that in order to obtain [Z]',

we have to only compute the impedance matrix [Z] of the so called diakopted

structure.

The most important point here to remember is that the elements of the

impedance matrix [Z]' depend upon simultaneously knowing current distribution

on all the radiating structure elements. Thus, without diakopting the struc-

ture, we have to simultaneously solve as many integral equals as there are

radiating elements. On the other hand, the elements of the impedance matrix

[Z] of the diakopted structure can be found by computing the current distribu-

tion on individual elements separately and hence involves solving as many

integral equations as there are radiating structures, but only individually.

This results in a tremendous savings of numerical computation. In what follows

we shall show how the so called total, primitive (or diakopted) impedance

matrix [Z] can be computed.

9



III. Impedance Matrix of a Diakopted Antenna

Consider each element of a diakopted antenna.

The excitation of each element is ascribed to two causes. a) the currents

entering the element at its "terminals," i.e., junctions with adjacent elements

or the source, and b) the fields of the currents and charges on all the other

elements. The first is referred to as "current coupling" and the second as

"field coupling." Both excitations can be treated separately and the resulting

compling can be superimposed due to linearity. Current coupling implies hypo-

thetical sources with a single terminal and the capability of impressing a

current onto a conductor. Although such sources violate the continuity condition,

their assumption is permissible if the electro-magnetic fields are expressed by

the retarded electromagnetic potentials. Although the continuity condition is

violated in the treatment of individual structure elements, it is restored when

the elements are interconnected. If a current is impressed at a terminal of a

structure element,the current spreads over the surface of the element and pro-

duces a current distribution which is uniquely determined by the geometry of the

element and the location of the terminal. This is called dominant current dis-

tribution of a particular element. There ari as many dominant current distribu-

tions as there are terminals. The relationship between the scalar potentials at

the terminals, produced by the dominant current distributions, and the impressed

currents is formulated by the "intrinsic impedance matrix" of the element and

is referred to as [Z(I)].

Field coupling excites scatter currents which are superimposed on the domi-

nant current distributions. The scalar potentials at the terminals due to field

coupling depend on all the impressed currents. Their relationship with the im-

pressed currents is formulated by a "field coupling" matrix [Z(F)].

] [z(1)] +0[Z(F)]

10



This matrix [Z] is called the total impedance matrix of the diakopted antenna

and relates the total scalar potentials at all the terminals of all the ele-

ments of the diakopted structure to all the impressed currents.

III. Current Coupling Between Structure Elements and Intrinsic

Impedance Matrix [Z(I)].

A. Structure elements with one terminal

Consider one of the capacitor plates of the dipole in Fig. 2 separated

from the other elements and suspended in space, with a current I impressed at

the terminal, i.e., contact area in the center of the plate (Fig. 3). The con-

tact area a is considered very small compared with the surface area of the

element. Excitation by an impressed current cannot be treated with Maxwell's

equations, because Maxwell's equations imply sources which separate positive

and negative charges. In contrast, impressed currents require sources which

produce charges. The retarded electromagnetic potentials do not impose any

conditions on the source, and can therefore be used for our problem.

If i( ) is the surface current density, and q(r) the surface charge

density due to the impressed current I, the retarded potentials are

,(, "  (r')G(rr')dS (vector potential) III.I

;(r) i-1 q(r')G(r,r')dS (scalar ootential) 111.2

with

, = ex(-jkr - k :2/*,,

- r
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ritre r' is the pus i tiun vector or the clar-.es ,inc l

eilenments dS , and r that ,; the ooint of observction. T ie dn- .;s

q(r) must satisfy the fo'Iowing two eauations on the surfac& ot ='e De en

outside the contact area

2tr) d= j (r) + C,,( , dS : 0 (Soundar conditin 111.3

- + jq(-) 0 (Continuity condition' 111.4

The condition that the current flux through the boundary curve - of tne ccn-

tact area o is the continuation of the imDressea current 1, is ,.iven as:

: I(F). £( )dr = I 111.5

where t(r) is a unit vector tangential to the surface S and normal -. The

current and charge distributions T(r) and q(r) due to the impressed current

are termed as "dominant" distributions since the currents due to field coucling

between the elements are, in general, relatively small. From tne boundary

condition 111.3

+ - +T S o 1.5
js Js

The surface of integration S is the surface of the element with the exclusion

of the contact area. Using the relations

and applying Gauss' theorem, one obtains from 111.6

I ___________________13



.F + (r)q(F)]oS = - r .(,(F)T'T<)cs =, :(c)i%). k'Kdr I1i.8

7 the contact area is sufficiently small, D can be considered corstant a;:n-

=n the contact area. Thus, with (5), equation (3) reduces to

JwS [A(r).U(r) + .:(r)q(-r)]dS = ¢I
is

..nere is the scalar notential at the contact area.

The ratio between and L can be used to define an impedance which shall

ne termed "intrinsic impedance." If A and t are expressed by :he current and

:-arge distribution, the intrinsic impedance of the element is

Z(1) 1 =2 [A(r).T(r) + ;(r)q(r)]dS
I is

I-~

S-S G (,I)f T ( ' 1 _( _ _ _( _ _ _ d S d S
4r 4 -k2  Q2

where Q = I/j is the total charge on the element. The current and charce dis-

tribution functions T/I and q/Q are solely determined by the geometry of tne

element and the location of the coupling area.

When the intrinsic impedance is computed with III.10 for a conductor of any

shape, for extremely low frequencies, it takes the form

jwC 47 E

whnere C is the static capacity of the element. The first term 1/j-C is the ne

14



,.in,c is to be expected. The second term represents neca ie resT-t,'-

-1.i Dnms and is not quite obvious. :t is brouQht abro.t by tne -ic- t:-: r

,:;;:rssed current produces a charge on tne eleienz witnou;

in contrast to a Maxwell source. if the scalar ptentia( :s expande, in a

Dower series in ;, one obtains

S G(4s)q( r')dS'g"d ' -" k q ..d7"_ S 4T- z S 'I ! - " ;S_' . '
r

The first term of this expansion is the static potenrial of the cnarges. The

second term which is indeoendent of r represents a octentia", terlec "bac,-

ground" potential o , which is uniform in space and has no gradient. -nis

means it does not produce a field. It is this background potentia which

oroduces the -31O, term in I11.11. 'hen the element which we assumed to be sus-

pended in space is within the antenna structure the background potential is

com ensated because the combined charges on all the other elements are negative-

ly equal to the charges of the considered element. The background potential

:an be avoided if the retarded scalar potential is redefined as modified scalar

potential

S- 1o:4-T.i

where

II

This modified scalar potential which will be used throughout the oazer 4s

imate as it is not conflicting with Maxwell's theory. Since : -, t.he

15
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c.ndary concition 111.3 ano the dominant current cs r .tcr

tnerefrom remain unchanged if tne conventicnal nooteni : is sttt .•

the modified potential . For a ".1axwel1 system and . are identicS, since cL

extended over the entire surface of the system is zero. The intrinsic i17oecanc=

of a structure element with one connection becomes

1T 12 JS

G(r,') 92_q(2 1 , ' dS 111.14
41 S L 12

111.14 represents a stationary formulation of the intrinsic imped-

ance. This means, small errors in the dominant current distribution have only

a second order effect on the intrinsic impedance. (See Appendix .)

Excitation by an impressed current I at the terminal can be considered

equivalent with the excitation by an oscillating charge

Q = 1 111.153W

,Icn is placed above the contact area at a distance d-.O as shown in Fig. .

The charge on the contact area a consists essentially of the image charge -Q,

with the charge +Qdistributed over the surface areas of the structure element,

because the net charge on the element must be zero. The equivalence between

charge and current excitation is shown in Appendix 1.

The intrinsic impedance Z(I) of an element with one terminal can be repre-

sented by a lumped element circuit as snown in Fig. 5. For low frequencies,

1.e. wnen the dimensions of the element are small compared witn tne wave

3nd L can be considered constant, while R increases proportionally with w
2 :

41C jL + R(1-)

16
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In case p instead of is used, the individual elements will show an additional -302.

fictitious resistance in the intrinsic impedance. However, the impedance of the

totally assembled antenna is the same as the conventional impedance due to

automatic compensation of -3M 2.

3. Structure elements with two or more terminals

A structure element with two terminals such as the cylindrical conduc: ,rs

of Fig. 2 has two dominant current distributions, one associated with each of

the impressed currents (Fig. 6). Each dominant current distribuzicn oroduces

a scalar potential at both contact areas. If 1II and 21 are the potentiais

at the terminals 1 and 2 due to I1 , and 12' 22 those due to 2' then, the

relationship between the total potentials I and 2 at the terminals and the

impressed currents can be written as

1 11 +  12 = Z1 I ( 1)1 1 + Z12(1)12 Iii.17

2 21 +  22 : Z12 (I)1l + Z22(1),2

For a structure element with M terminals the relationship between the

terminal potentials and the impressed currents is formulated by an M x M intrin-

sic impedance matrix.

[ ] = [Z][I] 111.18

wrere

Zj££): - [k .j + ;k( )qj( )]dS

I s k k

4r j, Gr' j k k Qk

18



The quantities ij,qjj and 1qk are the dominant current and charge distribu-

tions generated by the impressed currents I. : jWQ. and I= jwQk, and Ak, k

are the retarded potentials associated with iksq k . (111.19) is derived in

Appendix 2.

The symmetry of the intrinsic impedance matrix, Zjk(i) = Zkj(1), is evident

from the second formulation of 111.19. In Appendix 4 it is shown that 111.19

is a stationary representation of the matrix elements.

A lumped element equivalent circuit for a structure element with two ter-

minals is shown in Fig. 7. For sufficiently low frequencies the capacitors and

inductors can be considered constant, while the resistors increase with W2. The

resistor which is in series with the capacitor is negative, but smaller than the

resistors associated with the inductors.

111.2 Field Coupling Between Structural Elements.

Field Couplinq Impedance Matrix

We now consider a diakopted structure and arbitrary currents impressed at

the terminals. The capacitively loaded dipole of Figure 2 may serve as an example.

The terminals are identified by a superscript i and a subscript k, the superscript

referring to the number of the element, and the subscript referring to the number

of the terminal on the element. If there were no field coupling between the

elements, the current distributions on all the elements would be the dominant

distributions associated with the impressed currents.

The field of a dominant current distribution is non-Maxwellian since the

associated net charge is nonzero. If a current 11 is impressed at the terminal

the non-Maxwellian field of the dominant current and charge distributionk

i q induces currents on all the other elements. The scatter fields excited

by these induced currents are Maxwellian, since induced current distributions

have no net charge. These "first order" scatter fields excite second order

19
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Equivalent Circuit for Two Terninal Structure Elem~ent
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scatter fields and so on, each higher order having a greatly reduced amplitude.

All these scatter fields, when summed up, form a multiple scatter field which

is Maxwellian. The currents and charges associated with the multiple scatter

field are distributed over all the surfaces Sn (including Si) and shall be denoted

.in in
q k the super and subscripts indicating that they are produced by the

impressed current Ik and located on the element n.

kkThe ota fild eneate byIk satisfies on every element the bounaar.

conditions

(j,(A + + + 3k ) ) x d n = 0 (n = 1, ..., i, ... 1N) 11.20

where k $k are the retarded potentials of the dominant current and charge

distribution Ik' q k and SA1, 6$1 those of the scatter current and charge ais-

.in in
tributions 61k , 6q combined. N is the number of elements.

ki i

Since the electric field of Tk, qk satisfies the boundary condition on

Si, it follows from (20) for n = i that

+ ) x dSi = 0

Thus

k + k= 1...,..
I. +i dSi = 0, 111.21
is k 1, M

Using the relations 111.7 and Gauss' theorem one obtains the "backscatter"

potential due to the field interaction of the excited element with the

other elements:

21
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k,k k Si  k k kk

The letter F indicates field coupling, the first pair of 4n,ic.s k reers

to the terminal at which . is determined, and the second pair to the t ermina':

of the impressed current which produces this potential.

As shown in Appendix 3

"i i . N , -i n n
'5 + qdS' (A? 111.23

k k kk . + .k~qk)d 111.23

Furthermore, from the boundary conditions 111.20 using the relations 111.7 and

Gauss' theorem, follows

n (-+,n + (.k' + );q d~ n  0, for every 1 including i

The right-hand side of 111.24 is zero since for scatter currents tse P-

integral of Gauss' theorem in 111.5 is zero (see Appendix 5).

From the last three equations, one obtains the "back scatter" impedances

i (F) 2 N.
1, k ___ ,n, .l + Sn 11.2.5

k i1
k" k )

which has to be added to the diagonal terms of the intrinsic impedance matrix

i ,i
Zkk, using the notation of this section. Generalization of 111.25 to obtain

the scatter field contributions to the off-diagonal terms is straightfor,,arz.

One obtains

22



i,i
k jn+-i i n n,

S6 ___ 111.26Z(F). = - = - A1ll!nl ]s' "  + k qj ) n i.2

k j I] I I n~l j~n' kkj
lk

For k = j equation (26) transforms into 111.25

Let us now determine the potential (F) produced by the impressed cur-
k,m

.i

rent I m at the terminal (k). Because of the boundary condition 111.20

[(A+ 6A )+ 7p+ sZ 3  
1~ 0, 111.27

isi m m m m *k

and
^ i . -i,ndSn

njw( + A)+ + 5o .Ilm  = 0 111.28

where the second equation holds for every n including i. The ootentials

k and 6k characterize the scatter field which would be excited by 11
kk'

As before, we apply 111.7 and Gauss' theorem to the above two equations

to obtain

O(F) 1k=ijl, si(Am i1 + mqk() dS + m k + 51q) ds 111.29
k,m k s

sn(A '  @kqmi n, ! i .zn i 'ndnII3

0 (A (A.Tn + $1q En)dSn + Zndn 111.30.1 (sAk ' 61 + 5 )dm

k m km jSn k m m

The first term in 111.29 represents the contribution to the terminal potential

23
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.'F) from the non-Maxwellian field of the Icmirant current ani charce distribu-

k,m

tion i, q' and the second term that from the scatter current ano cnarge ais-

tributions m qm

As shown in Appendix 3

N~i.)i=,n 2,n n
SiI + 5iq k dS

i  (A . +kSq )dS 111.31
Sm 'k m mk I ~ J~n k 'm k m 113

is n

Expressing $(F) in terms of an impedance
k,m

i,z ,
(F) Z(F) I 111.32m
k,m k,m

the field coupling impedance between the terminals (1) and m

becomes

i,2. N
"Z 1 ( k + mo+qn)dSid) ,

-W (6A m  o, ),ndS, )F

k, m I I s im k kn k m km

111.33

Equations 111.26 and 111.27 formulate the elements of the field coupling im-
i

pedance matrix [Z(F)] which relates the scalar potentials $(F) at the terminals,
k

caused by field coupling, to the impressed currents:

i N M i,z N M i,z
[,$(F)] [Z(F)][], $(F) : $(F) : [ Z(F) I' 111.34

k z=l ml k,m Z=l m=l k, m
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IV. Complete Impedance Matrix [Z] of the Diakopted Antenna

The intrinsic impedance matrices of the individual structure elements

can be combined into diagonal block impedance matrix [Z(I)] by writing the

matrix elements Zk j (Eq. 111.19) in the form k"'(1). The superscript ik~j k,j

identifies the terminals k and j as belonging to the element. The block

matrix [Z(I)] whose elements ZiZ(1) are zero for i # Z is the "current
k ,j

coupling matrix" of the diakopted system, and relates the terminal potentials
M.

(1I ) = N Z kz -,, I
i=l j=1 k

due to current coupling to the Mi impressed currents of the element i.

The sum of the matrices [Z(I)] and [Z(F)], i.e.

[ZI] = [Z(I)]+[Z(F)] IV.l

forms the "complete impedance matrix" of the diakopted antenna, which

formulates the relationship between the total terminal potentials

M MZ

$k Z Z k,m
Z:1 m l

produced by current and field coupling, to all impressed currents. In

matrix form

[$1 : [ZJ[I] IV.2

If the matrix elements Zk,(I) (eq. 111.19) and Z (F) (eq. 111.26) are

added, the resulting elements Zk'j have the same formulation as those whichk ,j
pertain to field coupling between two different elements (eq. 111.33). In

other words, if the condition i # Z is dropped, equation 111.33 can be used

as the general formulation for all the elements of the complete impendance

matrix of the diakopted system.
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Calculation of the impedances according to eq. 111.33 requires, in principle,

computation of the scatter current and charge distributions. However, numerical

results obtained with this theory indicate that coupling by the scatter currents

is a negligible effect. It has been found that coupling by the junction currents

prevails over field coupling, and field coupling by the non-Maxwellian fields

dominates over that by the (Maxwellian) scatter fields. In principle, the field

coupling effect by the scatter currents can be obtained with an iterative pro-

cedure which is not discussed here.

If coupling by the scatter fields is neglected, the formula for the elements

of the complete impedance matrix for the diakopted system reduces to

= .f.A.i+• q~s i,. =,,...,N

Lkm K IZ S i  m k k : 1 ..... Mi  IV.3

k m 1
m : 1,.,., M

Thus all the matrix elements can be computed from the dominant current dis-

tributions.

The symmetry of the [i], i.e.

2iz = 2X~i IV.4
k,m m,k

can be easily verified, by expressing in (111.33) the vector and scalar potentials

by the current and charge distributions according to (11.1) and (111.12).

Equation (111.37) represents a stationary formulation of the matrix ele-

ments of [2]. This means first order errors in the current and charge dis-

tributions lead to second order errors in the impedances (Appendix 4).
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V. Interconnection of Diakopted Elements to Obtain Impedance of Assembled

Multi Element Antenna

The requirement for the diakopted structure with impressed currents to be

performancewise identical with the assembled antenna are that:

a) The sum of the impressed currents is zero at every junction between

the structure elements and the continuity condition is satisfied at

every input terminal. This requirement assures that the field of

assembled antenna is Maxwellian.

b) The scalar potentials at the interconnected terminals are equal.

c) The potential difference between the input in terminals is equated

with the driving voltage of the antenna source.

Imposing these junction conditions; the matrix equation (IV.2) yields a

system of linear equations for the unknown junction currents and the input im-

pedance of the antenna. Using network theory concepts the reduction of (IV.2)

to this linear system of equations by enforcing the junction conditions can

be formulated with a connection matrix [C] which reduces the number of poten-

tials and currents of the diakopted structure to those of the actual structure

[3]. As discussed in Section II, the impedance of the actual assembled antenna

can be written as:

[Z]= [Clt[Z][C]

where [Z] and [i]' refers to the actual and diakopted structure respectively.

The following example shows how [C] and [Z]' are obtained.

2
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Exampl e

As an example we apply the diakoptic theory to an ordinary thin-wire

iipole antenna and compare the results with the exact data available in the

literature. To obtain a multielement structure we cut each wire in nhIves, as

shown in Figure 8, and consider each half as a structure element. The aiakooteo

dipole comprises two structure elements with one terminal and two structure

elements with two terminals, so that the total number of terminals is six. The

complete impedance matrix of the diakopted structure FZ] is therefore a 6x6

miatrix. However there are only 8 different impeaances because the four struc-

ire elements have been assumed to be alike.

Using the enumerations of Figure 2 the -at,- eca2 c, 1..2) las r:.e cri,

z z z z ii
0_ 1 3 4 6 7 1_-i z° zl  z3  z 6 z z

v2 Z7  Z0  Z2  Z3 Z5  Z6  !2

- 3 2 Ll Z3 Z4  1
l 3: __

72 1 2

6 5 Z3  Z2  Z0  Z1  1

A44
2 Z7 ;Z6 Z4  Z3  Z1  Z 0  12

with

Z3 3  zll Z:1 zll Z2 2  Z2 2  Z44
L 11 22 11 22 11 22

31 13 I i 21 2 2 2
1 2 :21 = 2 1 2 21

z 11 zI 11 22 z22

32 21: 12 221 1 Zl2

-3 1, Z11  'I 22 22
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Ir2

'4 = Z ) 21

- z 12 2 1Z5 :2Z1: 122

32 "23 14 41
6 11 11 22 =22

: 34 43

7 12 '21

If coupling by the scatter currents is neglected, the -arkened port :!

of the impedance matrix Z is the current coupling matrix Z(I).

The interconnection conditions require

1 2 1 3l 1

2 21 1 2

4 -I 2  4 2
2 1 0 1 3

where 10, V0 are input current and driving voltage of the antenna.

Because of the symmetry of the antenna

-2
13 12 ; 1 ; : -2 1

Carrent and voltage matrix of the interconnected antenna are

Thus, the interconnection matrix becomes

3 1 1 2 2 4

1 2 1

rC ~ 3  0 0 I 1 -1 0 0

,-l 0 0 1 -1

30



and the impedance matrix of the assembled antenna

(Zo -Z) (2Z3  Z2 Z4)

(2Z3 - Z2  Z 4) (2Z 0 -2Zl - Z5 + 2Z6  Z 7)

For the numerical calculation of the impedances, the following simplifying

assumptions have been made:

a) coupling by the scatter currents is negligible

b) the dominant current distributions which, in this example, are the

same for all the elements, can be approximated by linear current

distributions (uniform charge distribution).

Although the latter approximation is rather crude, one should expect rea-

sonable results if the wire sections are short compared with the wave length,

because all the impedance formulas 4re stationary expressions. Linear current

distribution permits analytic formulations of all the impedances Z0, Z1, Z2

etc., and numerical calculations with a pocket calculator (such as HP 25).

The results obtained are presented in Figure 9. The curves are plots (from a

table by King [4]) of the real and the imaginary part of the input impedance

of a dipole for ln LL = 5 as a function of kL; 2L is the total length of thea
dipole, and a the wire radius. The crosses mark the values of the input im-

pedance from (45) with the above assumptions. For kL < 0.8 the deviation of

the real part of the input impedance from the exact value is less than 10% and

for the imaginary part less than 1%. From this one can conclude that the linear

approximation for the dominant current distribution is adequate if the length

of a wire section is <1/15A. This has been born out by computer results which

were obtained when each dipole wire was diakopted into 4 equal sections. These

results are marked in Figure 9 by dots and are in good agreement with the exact

curves even beyond the resonance of the antenna.
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VI. Receiving Antennas

in the case of a receiving antenna the excitation is produced by an ex-

ternal field E(e). The source element is replaced by the input impedance of

the receiver. All the quantities associated with the external field should be

characterized by the subscript e.

The boundary conditions on the element i yields

J~1iA~e + dS 0Si

or

I~~ 4"je) iw (A(e).I + (^(e)ql)dS' -j (e) 1_(e)dSI VI.1
S 

S

where 'k, qk are the dominant current and charge distributions which the im-

pressed current would produce on this element. k(e) the potential at the

junction i,k caused by the external field. From the boundary condition for

the dominant current distribution one obtains

i [ ,'i A < + g r a d ̂   $ ) .' -( e <dS' i W j ( A k ( e ) + 4^ <,q( e ) ) d S 0 V I .2
si kkJsi k

since 1(e) is zero at the junction. As shown in Appendix 2

j ( 'T(e) + 4'q(e))dS' =j(Ae* + 8b(e)q')d 1  VI.3
fS kkfSkk

Thus Equation (VI.l) reduces to

i "je) i V1.4
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The potential 4(e) produced by an external field at the junction i,k is given

by the scalar product between the external field S(e) and the dominant current

distribution function ik/Ik integrated over the surface Si of the element. In

the network presentation excitation by an external field is equivalent to vol-

tage sources V(e) in series with the terminal voltages of the intrinsic imped-

ance networks.
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VII Numerical Results and Computer Programs

A. Cylindrical Wire

A.l. Dominant Current Distribution, Dominant Charge Distribution and

Intrinsic Impedance Calculations

i(x) = Current density

x Source point

x1 = Observation point

c = Velocity of light

A = wave length x

i = i(o) = Io/27P

i(x) = current distribution at x

= wire length

p = wire radius

27rc - 2 =L k= a

d = VI(x-x , )2 + 4 (P)2 sin 2((a/2)

The vector and scalar potentials at an observation point x are:

1 2r e-j Bd

Az(x) = P f f i(x) E pdadx'0 0

S 1 1 21r 1 d' x)e ~I (x) = ~ f x f dT ix) e'J dxd

: 0 6 -j0 dx' xpddx'

Component of electric current field intensity parallel to the surface of the

wiere is zero, and can be written as:

"(J- z(x) + lddx 0

or

39



9 f1 [Ir [~ i(x.) d e +j~ a
2 i(Xi) ej3 dctdx' 0 0I.

odx' x d~ d

Let

dx

Integrating: x-

i(x11) = i(x ) + f a cosa(l -x)dx

= i(X. + - - (-in~lx
3 (-iW-jj +- Sin6(1-x.))

i(x N 0

Thus
N a

i(x) [a siaI, 1 + sina(l-x~) +

j1(sine(1-x)- sin (1-x))J VII.3

Substituting VII.2 and VII.3 into VII.1 and choosing

x N~-- i = 1,2,..N-1, we obtain

N a(g.. + k.i + z . 0 i

VII.4

N1
Z a.0- sinB('1- - sin '1''-,)

where
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x rd e ]x ad
g ji f f cosa(1-x') UX, (U )dudx' j= Vll.53 i t

xj_ 1  0 -

j-,

xj f e-Jd sin(l-xx ) - sina(l-x _))pdcxdx'] VII.7
xj_ 0 x~x.
xj-1 0 3n( =

Equation VII.4 is simultaneously solved to obtain aI .... a N and hence the

current and charge densities.

Quantities VII.5 to VII.7 are computed by quadrature integration formula.

These expressions can be considerably simplified when i~j, resulting in com-

putation saving.

A.2 Impedance Calculations

z 2 d_ 1) ddI, 2ipi f i (x) A (x') +
o 0 =o0

1 1 1 iTr

S0 0 0[

d d ij d

Ti(x) d-., x') ( + je)]dadxdx'

or

Z = ()2 N N jaq.q.Z2[($2ii " qj) d- VII.8

0 i1l j=l i3J-q i N

where
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i (x) ]i = i(x) 1
x=1x

(X . 4 ix) 1 1
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11 0 SLLUTTGN OF THE INTEGR%.AL EQUATTON FOR THE CURR'EN" IN A DIIPOLE OR mc.GN
1"CILE
2SUB'ROUTINE INTEG(AE4,CE'LXMYX1,BETASFUNCTI ,RHOIEIELTATHETA)

30 REAL*.9 ZWEIGHTX1 E~XYYPP0DETPHT
40 COMFLEX*16 FUNCPSvFUNCTI
50 DIMENSION Z(24).WEIGHT(24)
a..0 DIATA Z/0.577350'269,0.0,0O.774596669,%/
270 0.339981044,0 .861136312,.0-'() * O538469310%
30 0. 906179846,0,2'38619186,0.6612-'09387Y0.932469514,%
,'0 0.148874339,0,433395394,0,679409568,0.8650633679%
100 0. 973906529,0,0,0.201194094,0.394151347rZ
110 0.517097217390.724417731 ,0.8482-06583,0.937273392,%

j ~120 0.987992518/ C~5
1--0 DATA WE IGHT/1.0,0.8888889,0,55'556p/
40 0.65214515590.347854845,0.568888889,0.47862-8671 y%
L50 O.2-36926885,0.467913935,0.360761573,0, 171324493P,295524225,0.2692-66
7 19 f
160 O.2'19086363P0.149451349y%
:1-,0 0.066671344,0.1012891,0,198431485,0. 186161000,%
130 0.166269206,0,139570678,0.107159221l,0.070366047,%
[90 0.030753242/
200 S=(0.0!,0.)
21t0 110 10 1=17Y24
-17220 DO 10 Il=1,LX
230 rio 10 12"=1,2

200fi 10 .J=17Y24
DO0 10 J1=1,MY

26.)0 DO0 10 )2=lv2
270 30 STEPY=(D-C)/MY
"180 E'=C+STEFY*Jl
.90 CI=DI-STEPY

300 STEP'X=(B-A)/LX
-10 EI=A+STEPX*I1
-~0 A1=B1-STEPX

.340 YJ=((-1)**J2*Z(J)*(D1-C1)+I1+Cl)/2
350 FUNC=FUNCTI(XlXIYJE4ETARHOEIELTATHETA)
360 10 S=S+(MI-A1 )*(D1-C1 )/4*WEIGHT( I)*WEIGHT(J)*PUNC
370 RETURN
380 END
390 SUB~ROUTINE SIMLO (AEiNYKS)
400 REAL*8 APBPBIGAPTOLPSAVE
410 DIMENSION A(NN),EC(N)
420 'FORWARD SOLUTION'
430 TOL=0.0
440 KS=0
450 [10 65 J=1,N
4.:') jy~j+l
470 EBIGA=0
480 110 30 I=,JoN
V ) 4'3EARCH FOR MAXIMUM COEFFICIENT IN COLUMN'
-.-O IF(E'AES(BIGA).GEDiAES(A(IJ)))GO 'TO 30

AJ.QL=A(I' J) _
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'10 lMAX-I
53 0 -0 CfONTINUE

40'TEST FOR PIVOT LESS THAN TOLERANCE SINOULAR MATRIX'
550 IF(DAE4S(BIGA))**TOL)GO TO 40
560 KS=1
,570 RETURN
530 'INTERCHANGE ROWS IFNECESSARY'
590 40 I1=J+N*(J-2)
600 DO 50 K.=JvN
610 SAVE=A(JPK) 1
620 A(JPK)=A(IMAXPK)
*.. 0 A(IMAXPK)=SAVE
.40 'DIVIDE EQUATION BiY LEADING COEFFICIENT'
Q050 A(JK)=A(JK)/IIGA
-OSAVE=B(IMAX)

7- 0 E(IMAX).=B(J)
- 0 P(J)=SAVE/BIGA
.0 'ELIMINATE NEXT VARIAB~LE'

7 f' IF(J=N)GO TO 70
i'10 rDO 65 IX=JYrN

7?0 O 60JX=JYN
-30 60 A( IX,,jX)=A( IXJX)-A(IX,J)*A(JJX)
740 65 B(IX)=B(IX)-(B(J)*A(IXPJ))
750 'IACK SOLUTION'
760* 70 NY=N-1
770 IT=N*N
780 riO 80 J=1,NY
-90 1E4=N-J
800 IC=N
810 DO 80 K=1,J
820 B' IEO=B(IBE)-A( 18,IC)*4( IC)
330 80 IC=IC-1
840 RETURN
350 END
860 SU'9ROUTINE INTEGR(INITIAFINALNUMINT.KERNELRESULX,X2E4ETA,RHODIE
LTAPTHETA)
870 REAL*8 Z(7) ,WEIGHT(7) ,INITIAFINALINTERVABEIETAX1,RHOX,DrELTA.T
HE TA
380 COMPLEX*16 SPRESULKERNEL
390 DATA Z /0,201194094Y0.394151347,p%
900 0.570972173,0.724417731 ,0,848206583,0.937273392,%
910 0.987992518/
921)0
930
9?40 DATA WEIGHT /0.198431485P0.186161000?/%
950 0.166269206,0.139570678,0.107159221 ,0.070366047,%
960 0.030753242/

%)0 INTERV=(FINAL-INITIA)/NUMINT
990 A=INITIA
1000 RESUL-(0.0D00r0.0D00)
1.010 1.10 20 J~1,NUMINT
102.B. CA + [eNT E RV
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1)50 M.) 10 I=.l,7
1.0160 10 S=-S'+WEIGHT(I)*(KERNEL(XlX2 , ZI*E-)+4A/, EETAPRHO~rE
!-.TAvTHETA)+KERNEL(X1,X2 , (-Z(I)*(EB-A)+B+A)/2p EETAYRHO~tELTAPTHETA))
1070 S=S+0.2 02 5782-42*KERNEL(X1,X2 p(14+A)/29 BETr4.RHOYDELTAPTHETA)
1080 S=(E4-A)/'2.0*S
1090 A=A+INTERV
1100 20 RESOUL=RESIJL+S
L110 RETURN
1120 END
1130'
1140 8

,150 FUNCTION G(XlX2,ALFHABETARHOvDELTATHETA)
1160 COMPLEX*16 GEvEl
1170 REAL*8 Xl ,X2,'PETARHOALPHAvDrD1 IDELTATHETA
Lt80 D=DSQRT((XI-X2)**2+(2.0*RHO*DSIN(ALFHA/2 .0))**2)
11.90 D1ltSRT((X1+X2+DELTA)**2+(2'.0*RHO*DSIN(ALFPHA/2,0O))**2)
1200 E= (1 * 0000,.0100) *ECOS(BETA*D')-( 0~P.00,1* 010) *ESIN(BEETA*Ei)
I ' 1. E1=cI.0r'0090.Or'0)*DCOS(BETA*'1)-(O.0reO,1.Or'OO)*r'SIN(BETA*D1)
12220O G=(-E/D**2-(0.0E'00,l.OD00)*IBETA*E/D)*(Xl--X2)/D-THETA*(-E/D**2-(0.
oU00oo,0Doro)*E4ETA*El/Dl)*(X+X2)/'1
1230 RETURN
1 -40 END

12~60 FUNCTION H(XlX2,ALF'HABETARHOEIELTATHETA)
1270 COMPLEX*16 HvErEl
1280 REAL*G X1,X2,IETARHOALF'HA,D11,iDELTATHETA
t-'90 E=ESRT((Xl-X2)**2+(2.0*RHO*DSIN(ALPHA/2,0))**2)
1300 Dl=EISQRT( (Xl+X2-+EELTA)**2+i2.0*RH0*DSIN(ALPHA/2.0) )**2)
1310 E=(l1.ODOO,0.0000)*DCOS(BETA*D)-(0.000,1.ODOO)*'SIN(BETA*')
L320 El=( 1.ODOO,0.ODOO)*DICOS(BETA*Dl )-(0.0D00, 1 .0100)*DSIN(E4ETA*'1)
1330 H=E/D+THETA*El/11
1340 RETURN
1350 END
1351 FUNCTION HPR(ALF'HAX1,X2,EBETARHODELTATHETA)
1352 COMFLEX*16 HPRYEPE1
1-753 REAL*8 X1,X2,BETARHOLPHADPtI1,DELTATHETA
[2374 IWDSQRT (Xl-X2-)**2+(2.0*RHO*DSIN(ALPHA/2.0) )**2-)
1355 E'l=ESQRT( (X1+X2+DELTA)**2.+(2.0*RHO*DISIN(ALFPHA/.2.0))**2)
1356 E=( 1 .OOO0.ODOO)*E'COS(BETA*D1)-(0.0000 1 .ODOO)*E'SIN(BETA*Di)
1357 El=(1.0E00,0.0E'0)*ECOS(EETA*11)-(ODOO,.ODOO)*DSIN(BETA*DI)
1 358 HF'R=E/EI+THETA*E1/Ee1
1359 RETURN

3;60 END
1.361 FUNCTION H1(ALPHAXlgX2.'BETARHOE'ELTATHETA)
1.370 COMFLEX*16 HlrEvE1
1- 80 REAL*8 X1'X2,BETAPRH0,ALPHADD1,DiELTATHETA

130D=ESRT((Xl-X2)**2+(2.0*RHO*LISIN(ALPHA/2.0) )**2 )
.1400 Dl~EiSRT(Xl+X2+DIELTA)**2.+(2,0.*RHO*DSIN(ALFHA/'2.0) )**2)
1410 E=( 1.0000,0.ODOO)*E'COS(BETA*t')-(0.ODOO, 1.ODOO)*tiSIN(E(ETA*D)
1420 El=(1,0D00,0O.0D0)*ICOS(ETA*D)-(.fe00,.D)0')O*rST)4PFA*il)
["430 R41=E/Di-THETA*E/Ill+1,-THETA)*(.DOII,.Ou4((E'CA
L440 RETURN
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1 "150 ENT,
Si4(0 FUNCTION IMPKER(X,X2ALFHADE'ARHOYt'ELTATHETA)

:1470 COMPLEX*16 IMPKERPE,E1
1480 REAL*8 XlPX21ALFHAYBETAYRHC)PEIEEL.TAYTHETAYDI
1490 D=ESORT((X1-X2)**'2+(2.0*RHO*DiSIN(ALFHIA/2.0))**2 )
:1500 Dl=DSQRT((X1+X2 +DELTA)**2+(2.0*RHO*iSIN(ALPHA/2,.0) )**2)
[510 E=(1 .OE'00,0.0D00)*ECOS(BETA*D)-(0.ODOO,1,ODOO)*DSIN(4ETA*D)
1520 Ei=(1.0t'00,0.0E')*ECS(ETA*D)-(.D00Pl.0D00)*DSIN(BETA*Dl)
1530 IMPKER=ECOS(BETA*(1.0-X2))*(E/D-THETA*E1/D1+(l.0-THETA)*(0.0D00,1.0
1100) *BETA)
1540 RETURN
1550 END
1 560 EXTERNAL GYHFIMPKERPH19HF'R
1570 COMPLEX*16 RESGPRESHPGvHPA(40y4O)9AB(40)PRESULYCIHAR(30)vCURRPIMPKER
,. SUMHZ'FR,RESUICUR(30) ,IMPH1,RESHlCHARGEvHFR

V:30 REAL*8 XlX2,PSTEFPEETARHOXREALF'AIMAGFA,-REAATB,IAATBiRA(1600),R<
""A 50),ATA(1600),ATB(50)YMAGCHAMAGCURIDCHAIDCURDELTATHETAAL'HA
t590 WRITE (6p2200)
1600 READ (5v*) NE4ETAYRHOoDELTATfIETA
1.610 IF (THETA-0.5) 171,171,172
[620 17:1 WRITE (6p1171)
t.630 GO TO 173
1640 172 WRITE (6,1172)
1650 173 WRITE (6P999) EBETAYRHOYDELTA
1660 STEF'=1.0/N
1670 NTIM2=2*N
1680 NMINI=N-1
1690 X1=STEP

1700 DO 10 I~lPNMIN1I

:1730 DO 20 J=IPN
'[740 CALL INTEGR(0.0,3.1415,1 ,GRESGX1 ,X2,BETARHODELTATHETA)
1750 CALL INTEGR(0.0,3. 1415,1 ,HRESHX1 ,X2,BETARHOYE'ELTATHETA)
1760 SUMH=SUMH+RESH
1770 A(IJ)=(E'SIN(BETA*(1.0-(X2-STEP/2.0) ))-ESIN(EETA*(.0-(X2+STEP'/2.0)
)))/BETA*RESG+(E'SIN(BETA*(1.0-(X2-STEF/2.0)))-'SIN(BETA*(1.0-X2)))*ETA'
N*RESH+(DSIN(EIETA*(1.0-(X2+STEF/2.0)))-DSIN(BETA*(1.0-(X2-STEP/2.0))))*B
ETA/N*SUMH
1780 20 X2=X2+STEP
1790 10 Xl=X1+STEP
1800 X=STEP
1810 DO 30 J=IN
t820 A(NJ)=(DSIN(BETA*(1,0-X) )-ESIN(EBETA*(1.0-(X-STEFP))) )/BETA
1830 30 X=X+STEP
164o 10 40 I=1,N
1350 40 AB(I)=I/N*1.0
1860 DO 50 I1,N
13710 DO 50 J=IN
1380 REALP'A=(A( IJ)+IICONJG(A(IJ) ))/2.ODOO
1890 IMAGPA=(A(IJ)-riCONJG(A(IiJ) ))/2.ODOO/(0.0t(00,1..ODOO)
1900 REAATB=(AB(I)+E'CONJG(AB(I)))/2.ODOO
~".10 IMAATB=(A (I)-DCONJG(AB(I) ))/2-.OriOO/(0.OiOO,1.0rIs0)
;?20 RA( I4(J--1)*NTIM2)=REALFPA
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:'. 30 RA( +(J+N- I)*NT IM I MAGFA
1940 RA( I+N+. J-1 )*NTIM2)=IMAGFA
1t950 RA(I+N+(,J+N-1)*NTIM2)=REALF'A
V?60 RB( I )=REAATB
1970 RB(I+N)=IMAATB
1,780 50 CONTINUE
.1990 DO 410 X=lNTIM2
2)00O DO 410 J=1,NTIiI2
2)10o AAJ-1)*NTIM2+1D=0.0D00
2Q20 DO 410 K=IYNTIM2)
2030 410 ATA((J-1)*NTIM2+I)=ATA((J-1)*NTIM2+I)+RA((I-1)*N*2+K)*RA((J-1)*
N*2+K)
2040 DO 420 I=1,NTIM2
2050 ATB(I)=0.ODOO
2060 DO 420 K=1,NTIM2
2070 420 ATB( I )ATB( I)+RA( (I-i )*N*2+K)*R4(K)
2080 DO 430 I=1,NTIM2
2)90 430 RB(I)=ATB(I)
.2100 CALL SIMQ(ATARE4,NTIM2,KS)

.2110 WRITE (6Y3000)
2120 WRITE (6Y100)
-130 DO 110 I=1,N
'2140 110 WRITE (6p*) RE'(I)YREB(l+N)
2 15 0 WRITE (6Y100)
2160 WRITE (6y,)000)
2165 WRITE (6Y6000)
2170 X=STEP/12,0
2180 DO 150 I=1?N
2190 CHAR(I)=(RE4(I)*(l.0D00,0.0EI00)+RIB(I+N)*(0.0D00,1.0D00) )*DICOS(BETA*(
:.i .- X))
2195 CHARGE=CHAR( I)/BETA
2200 MAGCHA=CDABS(CHAR(I))
2210 MAGCHA=MAGCHA/BETA
2220 WRITE (6Y5000) XPCHARGEPMAGCHA
2230 150 X=X+STEP
24240 WRITE (6,100)
2250 WRITE (6Y2100)
.2255 WRITE (6P6000)
2260 CURR=(0,ODOO,0.ODOO)

*2270 X=1.0
~.280 DO 160 I=1,N
2290 CIJRR=CURR+(DSIN(BETA*(1,0-X))-DSIN(BETA*(1.0-(X-STEP))))/BETA*(RB(N

1-+)(. ODOO ,0. OtOO) +RB( N-I+1+N)*(0, ODOO, 1.ODOO))
2300 X=X-STEPI 2310 MAGCUR=Cr'ABS(CURR)
2320 CUR(N-I+1)=CURR
2330 160 WRITE (6v5000) XrCURRYMAGCUR
2:40 WRITE (6,100)
2350 WRITE (6r2300)
2360 wZPR IS THE POTENTIAL AT THE END
'370 Z=(0.0D00v0.0D00)
2380 ZPR=(0.ODOO,0.0000)
2390 X2=0.OffOO
2400 DO) 170 1=19N

47



£410 CALL INTEG(X'2,X2.+STEF,0.093.1415P~,1.-O+OdPETARESLILIM'NEPRoir'Evr.
A 4. THETA)
2';20 CALL INTEG(X2,X2'+STEP,0.0,3.1415,1,1,1.0,BETArRESUlIMF'KERRHODIELT
A - THETA)

240Z=Z+RESUL*(RB(I)*(1,0D00,0.ODOO)+RB(I+N)*(O.ODO0,1.roO))
240ZPR=ZPR+RESUI*(RC(I)*(1.0000,').ODOO)+R(I+N)*(O.OgOY .0000))

-450 170 X2=X2+STEP
246~0 Z=Z*377.0*(0,ODOO,1.ODOO)/4.0/3.1415**2/'ETA
2470 ZFR=ZFR*377.0*(0.oDOY1.ODOO)/4.o/3.1415**2/BETA
'400 ALPHA=1.0471
4q90 IMP=(0.01100,0.ODOO)

25-00 X1=STEP/2.0
2510 DO 66 J=IPN
2520 X2"=STE,/2". 0
25.30 DO 55 I:=IPN
'2540 r'=r'SORT((XI-X2-)**2+(2.0*RHO*DSIN(ALPHA/2.0))**2)
2550 11=SQIRT((Xl+X2+DELTA)**2+(2.0*RHO*DSIN(ALF'HA/2,.0))**2-)
2560 E=(1.ODOO'0.0D00)*DCOS(BETA*')-(0.O'00,1.ODOO)*DSIN(BETA*i>
2570 El=(l.0E'00,0.ODOO)*r'COS(BETA*'1)-(o.oDoo,1.ofioo)*'SIN(BETA*I)
2572 CALL INTEG(X1-STEFP/2 .0,X1+STEP/2 .0,X2-STEF'/2.0,X2+STEP/2,0,1tl1,0.78
54, EETA ,RESH ,HFR RHOPDELTAY THETA)
2573 CALL INTEG(X1-STEFP/2 .0PXl+STEP/2.0,X2-STEFP/2.0,X2+STEFP/2.0,1,1,0.78
54.E4ETARESH1 'Hi RHODELTATHETA)
2580 IMP=IMP+EETA**2*CUR(I)*CUR(J)*RESH-((1.0D00,0,0D00)*RB(I)+(0.0D00,1
.0D00)*RB(I+N) )*((1.0D00,0.0D00)*REB(J)+(0.0D00,1.0D00)*RB(J+N) )*DCOS(E4ET
A*(l.ODOO-Xl))*DCOS(BETA*(l.ODOO-X2))*RESHI
2590 55 X2=X2+STEF'
2600 66 X1.=Xl+STEP
210 IMFP=IMP*(0.0D00,1.0D00)*377.0/4.0/3.1415/BETA*(1.0D00+THETA)
"640 WRITE (6p*) IMP

..6 50 WRITE (6v2400)
2660 WRITE (6,*) ZPR
-670) 100 FORMAT('
2680 2000 FORMAT(' DISTANCE CHARGE')

960 2100 FORMAT(' DISTANCE CURRENT')
293 6000 FORMAT(' DISTANCE REAL IMAG MAGN')
2700 2200 FORMAT(' NPBETAYRHODELTATHETA')
2710 2300 FORMAT(' IMPEDANCE')
2720 5000 FORMAT(F6.3p3FS.3)
2730 3000 FORMAT(' '

2740 2400 FORMAT(' POTENTIAL AT THE END')
2750 1171 FORMAT(' MOQNOPOLE')
2760 1172 FORMAT(' DIPOLE')
2770 999 FORMAT(' BETA=',F8.4,'RADIUS=',F8.4,'GAF'='tF8.4)

8 '0 -nY0 P
2 '90 END
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0.9-. Current Distribution on Single Wire
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iGURE 1O Current distribution of a cylindrical conductor with a current
Io impressed at one end.
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FIGURE 11 Charge distribution of a cylindrical conductor with a current 10
impressed at one end 50

.. ........ .. . -.- -... " - - ... . ,'



Q 2kn -= 10

24.0~ 2r 2400

p radius of the wi re

Z. length of the wire
21.0 210
21.oJ.... X wavelength 20

R(Ohms)

-X(Ohms)

18.0

-x ffP

15.0 1 1500j

R

12.0 ' ~--. 1200
0

9.0 - - - - -.--.-..--- 900

6.0.............................-E-60o

3.0 -0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

FIGURE 12 Input imnpedance of a cylindrical conductor with a current I
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VIII. Dominant Current Distribution and Impedance of a Circular Disc Fed

at the Center

2nxi(x) I(x)

x

I 1 t e-j d
A(x') = f I (x) cosdxd VIII.1

0 0

Boundary condition
R dx-Jw A(x') - id @x' Vlll.3

From the above three equations

I d (e j ld e - j d

f f0 j -a if coscl(x)] dxda 0 VIII.4
0 0Tx

charge is zero at the center and takes the form of (l-x2 )-1/2 at the edge.

Therefore, we assume

d I(x) ak x <X<XkT'xk / -X2 Xk-1l

52
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Integrating

N
I(xk) Z Av-xk --XTx k=O 0 , N-1

I(X) =I(x k) + a k+l (A Cxk - v1i-x2T Xk <'x4Xk+l

Equation VIII.4 can be reworked as:

N N
Z [a.(g Wx + k.(x))+ Z aZjx]= 0 0.<x~l VIII.5

where 
7Tja

x j1 0dx d VT X2

0OO j- -)472 dcadx'

.(X) f f Tr 2 -J cosc(/T-xF- vTx T dadx'
Xj xj10 d x X-1

Rewriting VIII.5 and adding the terminal condition,

N j
Z a. (g.(x.) + k.i(x.) + Z k .(x 0) 0 x = 41-112

J-1 ~ ~ 1 ~ 1 X=i

N

j-1~ j-l 0
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Solution of above equations yields the dominant current distribution.

Impedance is computed as

N Xk - x
k=l Xkl
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Program for Current and Impedance Calculation

of a Center Fed Circular Disk

rq

Ii 55 I
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FIGURE 15 Impedance of a Center Fed Circular Disk
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IX. Impedance Calculation of a Thin Wire with Linear Current Distribution

• Linear Current distribution
I°
10

M 1 I eT -j d d -jd
= -4-[Bi(x)i(x') e - (X)i(x')(2 + j$) dxdx'da

Assumption of linear current distribution and computation of the kernel at

m 7r/3

M 1 1 -jd -j~de[B2(-x)(- + je)] dxdx'
0 0

d = / (x-x') +p- I

p = Radius of the wire

462
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Program for Impedance of a Wire with Linear Current Distri bution

XMIS PA"z LS UaSr WA1



kItS PAG3 1.5 333? %UALIfl 4AjjUaA4
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FIGURE 16 Dipole Impedance (Linear Current Distribution)
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X. Impedance Calculation of a Dipole with Linear Current Distribution

Via Diakoptic Theory

-- Linear Current distribution

104.. --1 0

2 1

11l1 1 1 -Jad -jad
4= u f 2[(l-x)(l-x') - - (2 + jB)] dxdx' = Zo

1,1 47re

2,11 1 -j~dI -id 1

eex)(x + J8) dxdx' = Zl

d = x-x')2 + dI =*x-x') + p

4',

z . - - --o -- - - -



Program to Compute Impedance of Dipole Assuming Linear Current Distribution

"i'Is PAGE LSg 35wy gaALj
.'" ow Iowazam 20 in
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FIGURE 17 Impedance of Wi re with Linear Current Distribution
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XI. Computation of Dominant Current Distribution for all Frequencies Via

Static Charge Distribution

Accurate computation of dominant current becomes one of the most important

tasks in using Diakoptic Theory for complicated radiating structure analysis.

For a general structure element it is a difficult task. Furthermore, if we can

compute dominant current for all frequencies, the impedance spectrum becomes

easy to compute. In many shapes, such as spheres, circular disks and cylindri-

cal conductors, the static charge distribution is either known or easy to com-

pute. In this section, we shall develop an algorithm to compute dominant

current distribution from static charge distribution.

Let
n

T(F') : (-jk)n in(r') i(' = XI.1
n n n

u
q( I) = 2 (-jk)u qn(r') , qn( ') =n XI.2

0

qn' . T' k w: mn n

Thus
( ): (-jk )n+m An, ( )

r) 4rn=O m--OFr

4L I' Z (-jk) Tx XI.3
4 A ,=O n=O

nAn = Tn(TI)DX-n'l dS' , D I Tr- -'l

Similarly

$(F)=-xk) Xl1 (T) XI.4

,=O n=O

where
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IA

~~~nV(F) X -n-i dS1

S' represents the total structure area.

Taking gradient of XI.4

CO A

4T, =0 n=O n
£-jWie V~ Z I (-jk) Z(r

where

= f, :nP *1 r DA-n-2 ad ( djJ)S'
£nX ( r ) =  T, . 'Vn F1n2r-d )S

Boundary Condition Etan = 0, implies

(-k2A(r) + jwiiV$)xd3 = 0, d5 =ndS XI.5

Substituting XI.3, XI.4 into XI.5 and equating powers of (-jk),

xoo (s, Tt) . TxF dS' 0 o XI.6

k ad rxn dS' 0 XI.7
i -- II

I (-ad + A xn) A 1,2,... XI.8AV~i +i )  Dr i 1  n=O A-l
n <A

If the impressed current is assumed real at all frequencies, we obtain

iI =0, ik(o) = O, k = 2, ..., n. Equations XI.6 and XI.8 compute the

static current i0 and rest of the currents i2, i39 ... , in '
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x = ,r £
A. Cylindrical Conductor

Dominant current equations are simplified as:

1 r'

fr f (T(XI) (x-x') dx'dca = 0r
0 00 D 3 rP

27rPI (o) 1 10 , D V= -x) + 2p-s-i-n372 7  x =0, r =0

i1(x) =0

;f (T 1)(x-)") dx'dca I f f n n1 ]JD A-n-2 dxfd
0 0 D n=o 0 0 Xn~)

Tables 1 and 2 represent computed values of the current I n(x) and charge q n(x).

Figures 19 an 12o show current I~ nx) and charge q nxW for different values of B.
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InX
Table 1, 1 (0) of a cylindrical conductor 0 = 21~n 2t 109 0p

I o(X) 12(x) 13(x) 14(x)
I T07 TOT T70T

0.0 1.000 0.0 0.0 0.0

0.1 0.865 -0.0644 -0.0070 0.0095

0.2 0.768 -0.1000 -0.0110 0.0157

0.3 0.677 -0.1231 -0.0138 0.0206

0.4 0.588 -0.1357 -0.0155 0.0243

0.5 0.500 -0.1386 -0.0163 0.0264

0.6 O.412 -0.1323 -0.0160 0.0266

0.7 0.323 -0.1169 -0.0146 0.0247

0.8 0.232 -0.0923 -0.0120 0.0203

0.9 0.135 -0.0570 -0.0079 0.0141

1.0 0.0 0.0 0.0 0.0

4
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____ dIln(X) __l

Table 2.: T- (o d of a cylindrical conductor Q2 = 2n 2_p _ 10

l dCoW_ I dI 2(x) dI3(x) 1 d 4(x)
(O)5 dx TT-' dx I(0 ' dx I(O07 dx

0.1 -1.010 -0.427 -0.0466 0.0683

0.2 -0.929 -0.286 -0.0331 0.0557

0.3 -0.896 -0.176 -0.0225 0.0435

0.4 -0.881 -0.076 -0.0125 0.0292

0.5 -0.877 0.018 -0.0024 0.0124

0.6 -0.881 0.108 -0.0081 -0.0073

0.7 -0.896 0.199 -0.0195 -0.0304

0.8 -0.929 0.293 -0.0325 -0.0579

0.9 -1.010 0.414 -0.0500 -0.0957

4
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+
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x =r2

FIGURE 19 Charge Distribution on a Cylindrical Conductor
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t B. Circular Disc

21rxi(x) = I(x)

D2 = (x2 + x,2 - 2xx'cosa)I/2

x =r/R, x' = r'/R

Static charge equation is

f d' (x'io) L (-) dx'd 0 27rxi(x) = I0
o f 0ax- dx D)

i1(x) =. 0

Higher order current densities are obtained by

7 l1 d __-x'_ os)x-l I 1 Et-n)
Of  Of  Df (x'i'X+ ) (x-xTcos) dx'dc f X-n+ .)  d j(xi)(xx'cosa)0 0n=O 0 0

i' x'

n11 cosa] D 
dx'd2

Lim i.(x) = 0 X = 1,2,...

Tables 3 and 4 show computed values for various currents and charges.

Figures 21 and 22 show current distribution and charges for different values

of B.
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Exact S I (x) 12(x) 13(x) 14(x)
X Static 0 Twrw 

Il-X
2

0.0 1.000 1.000 0.0 0.0 0.0

0.1 0.995 0.995 -0.014 -0.001 0.00030

0.2 0.980 0.980 -0.039 -0.006 0.00105

0.3 0.954 0.954 -0.070 -0.012 0.00188

0.4 0.917 0.017 -0.101 -O.G21 f 0.00241

0.5 0.866 0.866 -0.129 -0.031 0.00229

0.6 0.800 0.801 -0.150 -0.041 0.00125

0.7 0.714 0.715 -0.161 -0.049 -0.00074

0.8 0.600 0.600 -0.157 -0.054 -0.00333 

0.9 0.436 0.433 -0.129 -0.049 -0.00526

1.0 0.0 0.0 0.0 0.0 0.0

Table 3 of a circular plate fed at the center
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Exact div i(x) f div i(x) div i(x) div i(x)

X Static Io(O) Io(O) I(0) Io(0)

-~2 wiV -x 2

0.0 -0.159 -0.159 -0.647 -0.045 +0.011

0.1 -0.160 -0.160 -0.330 -0.045 00.009

0.2 -0.162 -0.162 -0.229 -0.043 0.007

0.3 -0.167 -0.166 -0.165 -0.041 0.004

0.4 -0.174 -0.173 -0.117 -0.037 0.001

0.5 -0.184 -0.182 -0.081 -0.033 -0.002

0.6 -0.199 -0.198 -0.043 -0.026 -0.004

0.7 -0.223 -0.222 -0.011 -0.017 -0.006

0.8 -0.265 -0.262 0.025 -0.004 -0.005

0.9 -0.365 -0.362 0.082 0.022 -0.00185

Table 4: div i(x) of a circular plate fed at the center
10(
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Figure 20 Current distribution on circular plate fed at the center
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-~--~--.~.- B = 1.3

-~ - B =0.5--

1. R_ R= radius of plate

1. 3 _---- ~- ~ ~ R - r = distance f rom center

1.2 -- - - X- = r

1.14- - ----- ix) =-surface current density

to= impressed current at center

0.9_ ________ divi(xK) I d(x.i'(x) . -

-0.8

7--- -~ -----0--~ 5 6 0. 0 9 .

Figure~~~~~~~~~~)7 21waq itiuino iclrpaelfednatthecnr

i- .
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XII. Top Loaded Dipole Antenna

In this section we shall compute impedance characteristics of a top loaded

dipole as shown in Figure XI-l

Element 3 37 Terminal

Terminal (1 p Element 1

Terminal

T (2

Terminaln(4)

Element 4 Elmn 2

Fig. 22 Dipole with Circular Plates Capactive Loading

Section X is used to compute dominant current distribution on various radiating

elements. Using the dominant current distributions, the various impedances are

computed as

zl= "II-l

k~m 111 S k m

km

where (1) represents the impressed current terminal and (me) representsth

terminal where resulting potential is computed.
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Matrix equation relating potentials to impressed currents is:

3 z 33 z31 z31 z32 z32 z34 1 3
1 1 Zl2 Zll Zl Zl2 Z1l 1

1z13 II 11 z 1Z 12 z12 z14 .11
02 21 22 21 21 22 21 2

01 11 12 11 11 12 11 1
= XII-2

2 23 z21 z21 z22 z22 z24 1 2

01 11 12 11 11 12 11 1

0 23 z21 z21 z22 z22 z24 1 2
2 21 22 21 21 22 21 2

4 l  z 43 z41 41"{ 42 z42 z44 1 4
1" 11 1 l2 11 11 ZI l2 11 1

Let

Iz 1 II 22 z22 Z
= z= Z = Z=

0z33z~ _44 = Z

z24 z13 z42 =z31 = Z1
Z21 = 21 =1Z2 12 1l

z1 2 1z =1  Z

z24 z13 z42 z31 = Z1
Zl= Zil = Zl= Zl

z 2 21 z12 z21=Z 3
2= 21= 21= Z 3
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14 z32  z41  z 23 Z
11 11 11 11 =

11 22 11 22 2
12 21 21 12 2

12 = z2 =2 5Z22 Z22 5

z32 z23 z14 z41
2= Z = 21= = 26

z34 z43 =Z7
Z1=z1 Z 7

Thus

3 z.i zzz13
1 24 26 27

1 1

o 1 z z z4  z z I

2o 22 3 25 26 2
1_z 1 1

322 20 21 3 4 12= z z2  zo  zI  z3  z 2

2 4  3  1  0 2  1

2 6 5  3 2 21 12

$I 4 I 4
27 26 Z4  23 21 L 0.

3 1, 1 2 2 = 4Potential Condition: 1 2 *l -l V, ~ 2 = l

Continuity Condition: 13 _I11 ~1 2, 2 14-
1 2' 1 = I1, 2 1
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Thus

0z3-z 2-Z 4+Z 3  z 6-z 5-z7 +Z6  1 1

0 Z- 7 Z+Z6  z Z- z4-z+Z z Z-ZZI

(Zz + z +2z z +Z z V-z'

Solin for 0657

2Z0-1 )(Z -2Z+Z 0+2Z6-Z5-Z7)-(z -z2-z4+Z3) (2Z +2Z 3-2Z-2)

Thus

z V0  2'(Z 0 -Z1 )(Z -2Zi +Z0+2Z6-Z5-Z7) -(Z -z2-z 4 +z42Z +23-2z 2-2Z4)
in 10 (Z'-2Zi+Z +2 Z6-Z5-7
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Conclusion

The major advantage of the diakoptic theory for multielement antennas,

is that the problem of determining the current

distribution on the antenna need not be solved for the structure as a whole,

but only for the individual structure elements. Excitation of each structure

element is ascribed to the currents at its junctio, with adjacent elements,

and to the fields of the surface currents on all the other elements. The

current distributions produced by the junction currents have been termed

dominant current distributions, because they constitute the major portion

of the currents on the composite antenna structure. The remainder of the

currentsare made up by scatter currents which are produced by field coupling.

Field coupling,asa first approximation, is determined by the dominant current

distributions, while coupling by the scatter currents in general is negli-

gible. Introduction of impedances for the characterization of structure

elements and their interaction permits utilization of network theory concepts

for the determination of the junction currents and the input impedance of the

antenna. Formulation of all impedances by stationary expressions renders the

results insensitive to computational errors in the current distributions. As

demonstrated by the example given in the paper, even rather crude approximations

to the dominant current distributions can yield good results.
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Appendix I

Equivalence between Current and Charge Excitation

Consider a structure element excited by an oscillating charge Q which

is placed at a distance d-.O above the (plane) contact area a(Fig. 4). The

charge Q produces an electric potential field - 1j which acts as the pri-P
mary field for the excitation of the structure element. The induced current

and charge distribution i,q radiates a Maxwell field which is characterized

by the retarded potentials A and . The total field satisfies the boundary

condition : = :
tan

[j A + + ) x d5 = on S and a (Al.l)
p

Current and charge distribution satisfy the continuity condition

i + jwq = on S and o (Al.2)

Let

I a iS on S, i = n ona,q qSonS,q qon a (Al.3)

A - As +Aa i - is + i, (Al.4)

where AS and iS refer to the current and charge distribution on S, and A

and $ to the current and charge distribution on a. Since a<<S, the contribu-

tion of Aa to the total vector potential A can be neglected. The charge distri-

butlon q consists essentially of the counter-charge to Q:

J q0 do = Q (Al.5)
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There is a small additional induced charge on a which is a continuation of

the charge distribution on S into the contact area. This charge can be neg-

lected since a<<S.

When d approaches zero, the potential field of the oscillating charge Q r
is compensated by that of the counter-charge:

Thus $p + =0 , p - S (Al.6)

This means, the entire field is practically only determined by the current and

charge distribution on S which satisfies the boundary condition

(JwAs + i S) x dS = on S (Al.7)

and the continuity condition

S, + jwqs7 0 (Al.8)

Moreover, since the net charge on the structure element is zero, the charge on

S is Q, and the current flux through the boundary r of the contact area is jwQ.

Thus, the current and charge distribution on S, produced by the external

charge Q, are identical with the dominant current and charge distribution pro-

duced by an impressed current I - JwQ.

Since joQ is the displacement current which enters the structure element

at the contact area it is obvious that excitation by an impressed displacement

current is equivalent to excitation by an impressed conduction current.
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Appendix 2

Derivation of Equation 111.19

Consider a structure element with several terminals and let k and j be

any two terminals where currents Ik and I. are impressed. The corresponding

dominant current and charge distributions k, qk and 1j, qj produce the

fields Ek and Ej which satisfy the boundary conditions

Ek x d9 = - (JwA k + ik x dS = 0 (A2.1)

j x dS = - (jWj + Vj) x dS = 5 (A2.2)

Since the currents Tk and I. are tangential to the surfaces, it follows from

the boundary conditions

fS(JAk + 0; T dS = 0 (A2.3)

(JAk + vk) T Ij dS = 0 (A2.4)

Using the vector identity

• (jT) - Oj • i + v with v i jwq (A2.5)

and applying Gauss' theorem as in (8) of Section II, equations (A2.3) and

(A2.4) can be written in the form

"fS- 4 dS - *kk tk " js(Ak " + Ck qk)dS (A2.6)

,A
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- dS jkj = k ij + kqj)dS (A2.7)

where ikk is the potential at the terminal k due to Ik , and ijk that at the

terminal j due to Ik' For j - k, (A2.7) transforms into (A2.6).

With

ijk = Zjklk (A2.8)

one obtains from (A2.7) the expression for Zjk given in the first line of 111.19.

The formulation in the second line of 111.19 is obtained if the potentials

Ak and are expressed by II.1 and 111.12 respectively.
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Appendix 3

Derivation of Equation 111.23

Let V be a dominant current distribution on the surface S and

On be the scatter current distribution on Sn produced by (n 1, 2, N).k Snpoue ky ( =1 ,.. )

Nr
=-- I 6 ln(F.)G( ,P)dSn(pI) (AM.)

n=l i~n'

Multiplying (A3.) with Ti(F) and integrating over -i
k

i i N i nn

6A (F) - T'(F)dS i -  f T (F) - S 6Sn(F')G(F ,Pe)dsn()dSi(F)Sf S wf i k nil Sn  k.

= 1-n=INJn1n( F ') ' (F)G(F, ,)dSi( )dSn(p,)

n=lfsn  k fS

N nijnf() * A ()dSn, (G(?,P9= G(P',))

(A3.2)

Similarily it can be shown that

6; q. dS1  qi jN dSn (A3.3)
f I  n Ifsn k k

The proof for 111.31 in the body of the paper follows the same outline

given above.
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Appendix 4

Proof for the Stationary Formulation of the Impedances

a) To prove that

Z =".f (A-I + jq)dS (A4.)
ITS

represents a stationary formulation of the intrinsic impedance, we assume that

the dominant current distribution i has an error of AT. The corresponding errors

of q, A and j shall be denoted Aq, AA and Aj. Then

Z + AZ = [ J(A + AA).(T + AT) + (j + Aj)(q + Aq)]dS (A4.2)
I S

The boundary condition for the correct dominant current distribution yields

f (jOwA + 5) AT dS = 0 (A4.3)

Since the dominant current distribution is the continuation of the impressed

current which is assumed to be unchanged, AT is zero at the terminal, and

(A4.3) can be written in the form

Jw (A - AT + iAq)dS = 0 (A4.4)
fS

Using the relations

IS A AT dS * AA T dS; JAq dS = &4q dS (A 4.5)

I1I'
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along with (A4.4), one obtains

pJ

J (A • A + $Aq)dS = I (AA T + A q)dS (A4.6)

Thus, from (A4.1), (A4.3), and (A4.6)

AZ-7 (AA • Ai + &jAq)dS (A4.7)

This means, AZ is of second order.

b) In the case of a mutual intrinsic impedance

Z f ( +W (Aj)dS (A4.8)
k I=k Ikj s+ j

both the dominant current distributions vk and 'i may have errors A1k and

l j, Thus

AZJk = f[klj fS
[(AA k •T + Ok q ) + (Ak • Alj + *k qj) + (AAk" A T + AikAqj)]d S

(A4.9)

Because the correct dominant current distributions satisfy the boundary condi-

tion I x dS =

fS wAk + • AlkdS = 0

or

JiWs (A k • A + ik Aqj)dS = 0 (A4.10)

II
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Furthermore

fSAWk Tj + Ak qj)dS • (A ATk + jAq k)dS = 0 (A4.11)

From (A4.10) and (A4.11), (A4.9) reduces to

&Zik -*r sy k • + A k q)dS (A4.12)

Thus aZik is of second order.

c)To prove that 111.33 is a stationary expression for the field coupling

impedances we treat the assembly of disconnected structure elements like a

single body. This means, when a current is impressed on terminal ( ) we con-

sider the dominant current distribution Ti together with the associated scatter

currents 61 which are distributed over all the elements as a dominant current

distribution of the system. The coupling impedances between any two terminals

can then be formulated like mutual intrinsic impedances (A4.8):

Z(F) = JA' + A')'( k +di01 )k + ($1+ 6m$)(qm + q)]dS (A4.13)
k,m km i m m kkSk m Is

The error AZ km produced by errors in the current distributions I 1 61

and Tm, aT is obtained from (A4.12):

AZ(F) *-J1 [(&A + &A I L + k6 +(j + 6j)(&q" + a~q9)]dS
k,m k m ESn

(A4.14)

and is of second order This relation can also be derived from 111.33

but only in a rather cumbersome manner.
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Appendix 5

If a current is impressed on any terminal of a diakopted structure there

will be capacitive currents between the contact areas of the disconnected ele-

ments, which have not been considered in the derivation of the field

coupling impedances. One might therefore conclude that the formulas are approxi-

mations which require the gaps between adjacent contact areas to be so large

that capacitive currents are negligible. The purpose of this appendix is to
i,i iZ

show that the expressions for Z(F) and Z(F) are correct even if the gaps are
k,k k,m

infinitely 
small.

Figure 25 shows two structure elements, a clylindrical rod 1 and a disc 2

1 2
with the opposing contact areas a2 and 01. If a current is impressed on the

1r) of the rod, there will be a potential difference between a 1andterminal o2

2a which, in turn, produces a displacement current between these terminals.

The potential difference which is the line integral of the electric potential

field between a and 01 is essentially determined by the charges on the contact

areas. If the gap is made smaller and smaller, the potential difference ap-

proaches zero, and the total current distribution becomes the dominant current

distribution of the interconnected elements. As shown in Appendix 1 displace-

ment currents at contact areas are equivalent to impressed currents. Thus, the

situation discussed above is the excitation of a diakopted structure not by one,

but by three impressed currents. To produce excitation by one impressed cur-

rent in accordance with our theory the displacement currents must be compen-

sated so that there is no current flux from the contact area onto the surface S

of the element (S, by definition does not c-n &in the contact areas of the

element). The magnitude of these compensating currents does not enter into
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Compensation of Capacitive Currents at Contact Areas
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the analysis because, if the impressed currents of the diakopted structure

are identical with the junction currents of the interconnected structure there

are no displacement currents between adjacent contact areas and the sum of

all the compensating currents is zero.

1
I

fA
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